Ngô Quốc Anh, Phó giáo sư, Tiến sĩ
Chức vụ Bộ môn:
Trưởng Bộ môn
Văn phòng:
T3-308
Thư điện tử VNU:
nqanh@vnu.edu.vn
Trang web:
https://anhngq.wordpress.com
Lĩnh vực nghiên cứu:
Giải tích hình học và phương trình đạo hàm riêng
Quá trình đào tạo:
- 2005-2007: Thạc sĩ, Đại học Quốc gia Hà Nội.
- 2008-2013: Tiến sĩ, Đại học Quốc gia Xin-ga-po.
Công bố khoa học
-
Existence and non-existence results for the higher order Hardy–Hénon equations revisited. Journal de Mathématiques Pures et Appliquées. 2022. doi:https://doi.org/10.1016/j.matpur.2022.05.006. .
-
A supercritical Sobolev type inequality in higher order Sobolev spaces and related higher order elliptic problems. . Journal of Differential Equations. 2020;268:5996-6032. doi:https://doi.org/10.1016/j.jde.2019.11.014. .
-
A supercritical Sobolev type inequality in higher order Sobolev spaces and related higher order elliptic problems. . Journal of Differential Equations. 2020;268:5996-6032. doi:https://doi.org/10.1016/j.jde.2019.11.014. .
-
Higher order Sobolev trace inequalities on balls revisited. Journal of Functional Analysis. 2020;278:108414. doi:https://doi.org/10.1016/j.jfa.2019.108414. .
-
Gradient estimates for some f-heat equations driven by Lichnerowicz's equation on complete smooth metric measure spaces. manuscripta mathematica. 2018;155:471–501. doi:10.1007/s00229-017-0946-3. .
-
On the sub poly-harmonic property for solutions of (-Δ)^p u <0 in R^n. Comptes Rendus Mathématique. 2017;355(5):526–532. doi:10.1016/j.crma.2017.04.003. .
-
Sharp reversed Hardy-Littlewood-Sobolev inequality on R^n. Israel Journal of Mathematics. 2017;220(1):189-223. doi:10.1007/s11856-017-1515-x. .
-
On radial solutions of Δ²u + u^{-q} = 0 in R³ with exactly quadratic growth at infinity. Differential and Integral Equations. 2017;30(11/12):917-928. .
-
Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space R_+^n. International Mathematics Research Notices. 2017;2017(20):6168-6186. .
-
Einstein constraint equations on Riemannian manifolds. Trong: Geometric Analysis Around Scalar Curvatures. Geometric Analysis Around Scalar Curvatures. World Scientific; 2016:119-210. doi:10.1142/9789813100558_0003. .