Công bố khoa học

2011

  1. Du NHuu, Liem NC, Chyan CJ, Lin SW. Lyapunov stability of quasilinear implicit dynamic equations on time scales. J. Inequal. Appl. 2011:Art. ID 979705, 27. doi:10.1155/2011/979705.
  2. Du NHuu, Trung TThanh. On the dynamics of predator-prey systems with {B}eddington-{D}eangelis functional response. Asian-Eur. J. Math. 2011;4:35–48. doi:10.1142/S1793557111000058.
  3. Ton TViet, Hieu NTrong. Dynamics of species in a model with two predators and one prey. Nonlinear Analysis: Theory, Methods & Applications. 2011;74:4868 - 4881. doi:http://dx.doi.org/10.1016/j.na.2011.04.061.
  4. Du NHuu, Loi LCong, Duy TKhanh, Viet VTien. On index-2 linear implicit difference equations. Linear Algebra Appl. 2011;434:394–414. doi:10.1016/j.laa.2010.09.025.
  5. Du NHuu, Dang NHai. Dynamics of {K}olmogorov systems of competitive type under the telegraph noise. J. Differential Equations. 2011;250:386–409. doi:10.1016/j.jde.2010.08.023.
  6. Huy VN, Bang HH. Behavior of the sequence of norm of primitives of functions depending on their spectrum. Doklady Mathematics. 2011;84:672-674.
  7. Huy VN, Bang HH. Behavior of the sequence of norms of primitives of a function in Orlicz spaces. East J. Approx. 2011;17:141-150.
  8. Huy VN, Bang HH, Hoang NV. Best constants for the inequalities between equivalent norm in Orlicz spaces. Bullitin of the Polish Acadamy of Science Mathematics. 2011;59.
  9. Phan T-H, Nguyen T-M-H, Le-Hong P. Lexicographic study in the Sketch Engine. Journal of Computer Science and Cybernetics. 2011;27(3):206-218.
  10. Vũ BCông. A splitting algorithm for dual monotone inclusions involving cocoercive operators. Advances in Computational Mathematics. 2011;38:667–681. doi:10.1007/s10444-011-9254-8.
  11. Vinh PChi, Tung DXuan. Homogenization of rough two-dimensional interfaces separating two anisotropic solids. Journal of Applied Mechanics. 2011;78:041014.
  12. Egorov YV, Chuong NM, Tuan DA. A nonlinear boundary value problem for a degenerate parabolic pseudodifferential equation. Russian Journal of Mathematical Sciences. 2011;179(4):461-474.
  13. Đỗ Đức T, Ninh VThu. The second main theorem for hypersurfaces. Kyushu J. Math. 65 (2011), no. 2, pp. 219–236. 2011.

2010

  1. Huy VN, Bang HH. Behavior of the sequence of norm of primitives of a function. J. Approximation Theory. 2010;162.
  2. Vinh PChi, Giang PThi Ha. On formulas for the Rayleigh wave velocity in pre-strained elastic materials subject to an isotropic internal constraint. International Journal of Engineering Science. 2010;48:275–289.
  3. Vinh PChi, Seriani G. Explicit secular equations of Stoneley waves in a non-homogeneous orthotropic elastic medium under the influence of gravity. Applied Mathematics and Computation. 2010;215:3515–3525.
  4. Anh PKy, Dung VTien. Parallel iterative regularization algorithms for large overdetermined linear systems. Int. J. Comput. Methods. 2010;7:525–537. doi:10.1142/S0219876210002313.
  5. Thang DHung, Anh TNgoc. On random equations and applications to random fixed point theorems. Random Oper. Stoch. Equ. 2010;18:199–212. doi:10.1515/ROSE.2010.011.
  6. Thang DHung, Anh TNgoc. Some results on random equations. Vietnam J. Math. 2010;38:35–44.
  7. Bac DPhuong, Thang NQuoc. On the topology of relative orbits for actions of algebraic groups over complete fields. Proc. Japan Acad. Ser. A Math. Sci. 2010;86:133–138. doi:10.3792/pjaa.86.133.
  8. Hưng NHV. The homomorphisms between the {D}ickson-{M}ùi algebras as modules over the {S}teenrod algebra. C. R. Math. Acad. Sci. Paris. 2010;348:1001–1004. doi:10.1016/j.crma.2010.07.032.
  9. Bac DPhuong, Thǎńg NQuôć. On a relative version of a theorem of Bogomolov over perfect fields and its applications. Journal of Algebra. 2010;324:1259 - 1278. doi:http://dx.doi.org/10.1016/j.jalgebra.2010.04.020.
  10. Hưng NHV, Qu\`ynh VTN. The squaring operation on {$\scr A$}-generators of the {D}ickson algebra. Math. Proc. Cambridge Philos. Soc. 2010;148:267–288. doi:10.1017/S0305004109990405.
  11. Vinh PChi, Tung DXuan. Homogenized equations of the linear elasticity in two-dimensional domains with very rough interfaces. Mechanics Research Communications. 2010;37:285–288.

2009

  1. Đỗ Đức T, Ninh VT. Characterization of domains in $\mathbb C^n$ by their noncompact automorphism groups. Nagoya Math. J. 196 (2009), pp. 1-26. 2009.