Công bố khoa học

2020

  1. Tikhonov IV, Tung VNguyen Son. Solvability of a Nonlocal Problem for an Evolution Equation with a Superstable Semigroup. Differential Equations. 2020;56:478-498. doi:10.1134/S0012266120040072.

2019

  1. Lê QThuong, Nguyen LPhu Hoang, Pho DTai. On complex homogeneous singularities. Bull. Aust. Math. Soc. 2019;100:395–409.
  2. Vinh PC, TUAN TT, HUE LT, và c.s. Exact formula for the horizontal-to-vertical displacement ratio of Rayleigh waves in layered orthotropic half-spaces. The Journal of the Acoustical Society of America. 2019;146:1279–1289.
  3. Vinh PChi, Tuan TThanh, Hue LThi. Formulas for the H/V ratio (ellipticity) of Rayleigh waves in orthotropic elastic half-spaces. Waves in Random and Complex Media. 2019;29:759–774.
  4. Lê QThuong, Nguyen LPhu Hoang, Pho DTai. On complex homogeneous singularities. Bull. Aust. Math. Soc. 2019;100:395–409.
  5. Dung NTien, Son TCong. Tail distribution estimates for one-dimensional diffusion processes. Journal of Mathematical Analysis and Applications. 2019;479:2119 - 2138. doi:https://doi.org/10.1016/j.jmaa.2019.07.044.
  6. Vinh PC, TUAN TT, HUE LT, và c.s. Exact formula for the horizontal-to-vertical displacement ratio of Rayleigh waves in layered orthotropic half-spaces. The Journal of the Acoustical Society of America. 2019;146:1279–1289.
  7. Kieu NThi, Vinh PChi, Tung DXuan. Homogenization of very rough three-dimensional interfaces for the poroelasticity theory with Biot's model. Vietnam Journal of Mechanics. 2019;41:273–285.
  8. Ha M-L, Nguyen T-M-H. A case study on meaning representation for Vietnamese. Trong: Proceedings of the First International Workshop on Designing Meaning Representations. Proceedings of the First International Workshop on Designing Meaning Representations.; 2019. Available at: https://aclanthology.org/W19-3317/.
  9. Do T-H, Nguyen T-M-H, Santosh KC. Text Extraction Using Sparse Representation over Learning Dictionaries. Trong: Recent Trends in Image Processing and Pattern Recognition: Second International Conference, RTIP2R 2018, Solapur, India, December 21–22, 2018, Revised Selected Papers, Part III 2. Recent Trends in Image Processing and Pattern Recognition: Second International Conference, RTIP2R 2018, Solapur, India, December 21–22, 2018, Revised Selected Papers, Part III 2.; 2019. Available at: https://link.springer.com/chapter/10.1007/978-981-13-9187-3_1.
  10. Hoang DA, Khorramian A, Uehara R. Shortest Reconfiguration Sequence for Sliding Tokens on Spiders. Trong: Proceedings of CIAC 2019. Proceedings of CIAC 2019.; 2019. Available at: https://arxiv.org/abs/1806.08291.
  11. Dung NThac, Sung C-JAnna. Analysis of weighted p-harmonic forms and applications. International Journal of Mathematics. 2019;30:1950058.
  12. Tuan TThanh, Vinh PChi, Aoudia A, Dung TThi Thuy, Manu-Marfo D. Approximate analytical expressions of the fundamental peak frequency and the amplification factor of S-wave transfer function in a viscoelastic layered model. Pure and Applied Geophysics. 2019;176:1433–1443.
  13. Vinh PC, Tung DX, Kieu NT. Homogenization of very rough two-dimensional interfaces separating two dissimilar poroelastic solids with time-harmonic motions. Mathematics and Mechanics of Solids. 2019;24:1349–1367.
  14. Le V. Reflected Brownian motion with a drift that depends on its local time. Statistics & Probability Letters. 2019.

2018

  1. Lê QThuong. The motivic Thom-Sebastiani theorem for regular and formal functions. Journal für die reine und angewandte Mathematik. 2018;735(2):175-198. doi:10.1515/crelle-2015-0022.
  2. Lê QThuong. Motivic Milnor fibers of plane curve singularities. Vietnam J. Math. 2018;46:493–506.
  3. Tikhonov IV, Tung VNguyen Son. The Solvability of the Inverse Problem for the Evolution Equation with a Superstable Semigroup. RUDN Journal of Mathematics, Information Sciences and Physics. 2018;26:103-118. doi:10.22363/2312-9735-2018-26-2-103-118.
  4. Lê QThuong. Alexander polynomials of complex projective plane curves. Bull. Aust. Math. Soc. 2018;97:386–395.
  5. Lê QThuong. The motivic Thom–Sebastiani theorem for regular and formal functions. J. Reine Angew. Math. 2018;2018:175–198.
  6. Lê QThuong, Nguyen HDuc. Euler reflexion formulas for motivic multiple zeta functions. Journal of Algebraic Geometry. 2018;27:91-120. doi:https://doi.org/10.1090/jag/689.