Ninh Văn Thu, Tiến sĩ
Thư điện tử VNU:
thunv@vnu.edu.vn
Trang web:
thunv.wordpress.com
Lĩnh vực nghiên cứu:
Several Complex Variables, Nevanlinna Theory
Quá trình đào tạo:
- 2005-2010: PhD. in Mathematics at Department of Mathematics, Hanoi National University of Education, Hanoi, Vietnam.
- 2002-2004: M.Sc. in Mathematics, VNU University of Science, Vietnam, Hanoi, Vietnam.
- 1998-2002: B.S. in Mathematics, VNU University of Science, Vietnam, Hanoi, Vietnam.
Các môn giảng dạy:
- Analysis (Giải tích)
- Complex Analysis (Giải tích phức)
Hoạt động khoa học:
- 10/2006-11/2006: Short Visiting Scholar, Labo Emile Picard, University of Toulouse, Toulouse, France
- 09/2010-12/2010: Short Visiting Scholar, Math department, University of Washington, Seattle, USA
- 03/2012-02/2013: Postdoctoral Fellow at Center for Geometry and its Applications (GAIA), POSTECH, Pohang, Korea
- 03/2013-02/2015: Research Assistant Professor at Center for Geometry and its Applications (GAIA), POSTECH, Pohang, Korea
- 04/2015-12/2015: Senior Researcher at VIASM, Hanoi, Vietnam
Khen thưởng:
- 2000: VNU-UFJ Foundation Scholarship, Vietnam National University at Hanoi, Vietnam.
Công bố khoa học
-
Infinitesimal CR automorphisms and stability groups of infinite-type models in $\mathbb C^2$. Kyoto Journal of Mathematics. 2016;Volume 56, Number 2 (2016), 441-464. .
-
Iterates of holomorphic self-maps on pseudoconvex domains of finite and infinite type in {$\Bbb{C}^n$}. Proc. Amer. Math. Soc. 2016;144:5197–5206. doi:10.1090/proc/13138. .
-
On the CR automorphism group of a certain hypersurface of infinite type in $\mathbb C^2$. Complex Var. Elliptic Equ. 60 (2015), pp. 977-991. 2015. .
-
On the tangential holomorphic vector fields vanishing at an infinite type point. Trans. Amer. Math. Soc. 2015;367:867–885. doi:10.1090/S0002-9947-2014-05917-5. .
-
On the existence of parabolic actions in convex domains of {$\Bbb{C}^{k+1}$}. Czechoslovak Math. J. 2015;65(140):579–585. doi:10.1007/s10587-015-0197-y. .
-
On limit {B}rody curves in {$\Bbb C^n$} and {$(\Bbb C^*)^2$}. Kyushu J. Math. 2015;69:111–123. doi:10.2206/kyushujm.69.111. .
-
The automorphism group of a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl. 409 (2014), pp. 637-642. 2014. .
-
On the nonexistence of parabolic boundary points of certain domains in $\mathbb C^2$. J. Math. Anal. Appl. 389 (2012), pp. 908–914. 2012. .
-
The second main theorem for hypersurfaces. Kyushu J. Math. 65 (2011), no. 2, pp. 219–236. 2011. .
-
Geometry of domains in $\mathbb C^n$ with noncompact automorphism groups. Vietnam J. Math. 37: 2&3 (2009), pp. 1-12. 2009. .