2016
-
Conditions for permanence and ergodicity of certain stochastic predator-prey models. J. Appl. Probab. 2016;53:187–202. Available at: http://projecteuclid.org/euclid.jap/1457470568. .
2015
-
Exponential {$P$}-stability of stochastic {$\nabla$}-dynamic equations on disconnected sets. Electron. J. Differential Equations. 2015:No. 285, 23. .
-
Dynamical behavior of a stochastic {SIRS} epidemic model. Math. Model. Nat. Phenom. 2015;10:56–73. doi:10.1051/mmnp/201510205. .
-
SPATIAL HETEROGENEITY, FAST MIGRATION AND COEXISTENCE OF INTRAGUILD PREDATION DYNAMICS. Journal of Biological Systems. 2015;23:79-92. doi:10.1142/S0218339015500059. .
2014
-
Asymptotic behavior of {K}olmogorov systems with predator-prey type in random environment. Commun. Pure Appl. Anal. 2014;13:2693–2712. doi:10.3934/cpaa.2014.13.2693. .
-
Existence of stationary distributions for {K}olmogorov systems of competitive type under telegraph noise. J. Differential Equations. 2014;257:2078–2101. doi:10.1016/j.jde.2014.05.029. .
-
On stability in distribution of stochastic differential delay equations with {M}arkovian switching. Systems Control Lett. 2014;65:43–49. doi:10.1016/j.sysconle.2013.12.006. .
-
Effect of Small Versus Large Clusters of Fish School on the Yield of a Purse-Seine Small Pelagic Fishery Including a Marine Protected Area. Acta Biotheoretica. 2014;62:339–353. doi:10.1007/s10441-014-9220-1. .
2013
-
Stability and robust stability of linear time-invariant delay differential-algebraic equations. SIAM J. Matrix Anal. Appl. 2013;34:1631–1654. doi:10.1137/130926110. .
-
Robust stability of differential-algebraic equations. Trong: Surveys in differential-algebraic equations. {I}. Surveys in differential-algebraic equations. {I}. Springer, Heidelberg; 2013:63–95. doi:10.1007/978-3-642-34928-7_2. .