2016
-
Einstein constraint equations on Riemannian manifolds. Trong: Geometric Analysis Around Scalar Curvatures. Geometric Analysis Around Scalar Curvatures. World Scientific; 2016:119-210. doi:10.1142/9789813100558_0003. .
-
Conditions for permanence and ergodicity of certain stochastic predator-prey models. J. Appl. Probab. 2016;53:187–202. Available at: http://projecteuclid.org/euclid.jap/1457470568. .
-
Formulas for an explicit solution of the model nonlocal problem associated with the ordinary transport equation. 2016;24:57-73. doi:10.25587/SVFU.2017.1.8437. .
2015
-
Exponential {$P$}-stability of stochastic {$\nabla$}-dynamic equations on disconnected sets. Electron. J. Differential Equations. 2015:No. 285, 23. .
-
SPATIAL HETEROGENEITY, FAST MIGRATION AND COEXISTENCE OF INTRAGUILD PREDATION DYNAMICS. Journal of Biological Systems. 2015;23:79-92. doi:10.1142/S0218339015500059. .
-
Dynamical behavior of a stochastic {SIRS} epidemic model. Math. Model. Nat. Phenom. 2015;10:56–73. doi:10.1051/mmnp/201510205. .
-
Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds in the null case. Communications in Mathematical Physics. 2015;334:193–222. doi:10.1007/s00220-014-2133-7. .
-
Prescribing Webster scalar curvature on CR manifolds of negative conformal invariants. Journal of Differential Equations. 2015;258:4443–4490. doi:10.1016/j.jde.2015.01.040. .
2014
-
Existence of stationary distributions for {K}olmogorov systems of competitive type under telegraph noise. J. Differential Equations. 2014;257:2078–2101. doi:10.1016/j.jde.2014.05.029. .
-
Asymptotic behavior of {K}olmogorov systems with predator-prey type in random environment. Commun. Pure Appl. Anal. 2014;13:2693–2712. doi:10.3934/cpaa.2014.13.2693. .