Công bố khoa học

2012

  1. Anh NThi Ngoc, Daniel ZJean, Du NHuu, Drogoul A, An VDuc. Advanced Agent Technology: AAMAS 2011 Workshops, AMPLE, AOSE, ARMS, DOCM3AS, ITMAS, Taipei, Taiwan, May 2-6, 2011. Revised Selected Papers. Trong: Dechesne F, Hattori H, Mors A, Such JMiguel, Weyns D, Dignum F, b.t.v Berlin, Heidelberg: Springer Berlin Heidelberg; 2012:371–383. doi:10.1007/978-3-642-27216-5_28.
  2. Hoang NDung, Koch T. Steiner Tree Packing Revisited. Math Meth Oper Res. 2012;76(1):95-123.
  3. Bac DPhuong, Thang NQuoc. On the Topology of Relative Orbits for Actions of Algebraic Tori over Local Fields. Journal of Lie Theory. 2012;22:1025–1038.
  4. Bich DHuy, Nguyen NXuan. Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations. Journal of Sound and Vibration. 2012;331:5488–5501.

2011

  1. Huy VN, Bang HH. Behavior of the sequence of norm of primitives of functions depending on their spectrum. Doklady Mathematics. 2011;84:672-674.
  2. Huy VN, Bang HH. Behavior of the sequence of norms of primitives of a function in Orlicz spaces. East J. Approx. 2011;17:141-150.
  3. Huy VN, Bang HH, Hoang NV. Best constants for the inequalities between equivalent norm in Orlicz spaces. Bullitin of the Polish Acadamy of Science Mathematics. 2011;59.
  4. Phan T-H, Nguyen T-M-H, Le-Hong P. Lexicographic study in the Sketch Engine. Journal of Computer Science and Cybernetics. 2011;27(3):206-218.
  5. Egorov YV, Chuong NM, Tuan DA. A nonlinear boundary value problem for a degenerate parabolic pseudodifferential equation. Russian Journal of Mathematical Sciences. 2011;179(4):461-474.
  6. Đỗ Đức T, Ninh VThu. The second main theorem for hypersurfaces. Kyushu J. Math. 65 (2011), no. 2, pp. 219–236. 2011.
  7. Anh PKy, Van Chung C. Parallel regularized {N}ewton method for nonlinear ill-posed equations. Numer. Algorithms. 2011;58:379–398. doi:10.1007/s11075-011-9460-y.
  8. Vũ BCông. A splitting algorithm for dual monotone inclusions involving cocoercive operators. Advances in Computational Mathematics. 2011;38:667–681. doi:10.1007/s10444-011-9254-8.
  9. Ton TViet, Hieu NTrong. Dynamics of species in a model with two predators and one prey. Nonlinear Analysis: Theory, Methods & Applications. 2011;74:4868 - 4881. doi:http://dx.doi.org/10.1016/j.na.2011.04.061.
  10. Linh VHoang, Mehrmann V. Spectral analysis for linear differential-algebraic equations. Discrete Contin. Dyn. Syst. 2011:991–1000.
  11. Linh VHoang, Mehrmann V. Approximation of spectral intervals and leading directions for differential-algebraic equation via smooth singular value decompositions. SIAM J. Numer. Anal. 2011;49:1810–1835. doi:10.1137/100806059.
  12. Linh VHoang, Mehrmann V, Van Vleck ES. {$QR$} methods and error analysis for computing {L}yapunov and {S}acker-{S}ell spectral intervals for linear differential-algebraic equations. Adv. Comput. Math. 2011;35:281–322. doi:10.1007/s10444-010-9156-1.
  13. Vinh PChi, Tung DXuan. Homogenization of rough two-dimensional interfaces separating two anisotropic solids. Journal of Applied Mechanics. 2011;78:041014.
  14. Du NHuu, Dieu NThanh. The first attempt on the stochastic calculus on time scale. Stoch. Anal. Appl. 2011;29:1057–1080. doi:10.1080/07362994.2011.610169.
  15. Du NHuu, Thuan DDuc, Liem NChi. Stability radius of implicit dynamic equations with constant coefficients on time scales. Systems Control Lett. 2011;60:596–603. doi:10.1016/j.sysconle.2011.04.018.
  16. Dang NHai, Du NHuu, Ton TViet. Asymptotic behavior of predator-prey systems perturbed by white noise. Acta Appl. Math. 2011;115:351–370. doi:10.1007/s10440-011-9628-4.
  17. Ton TViet, Yamamoto Y, Du NHuu, Yagi A. Asymptotic behaviour of solutions to stochastic phase transition model. Sci. Math. Jpn. 2011;73:143–156.
  18. Du NHuu, Liem NC, Chyan CJ, Lin SW. Lyapunov stability of quasilinear implicit dynamic equations on time scales. J. Inequal. Appl. 2011:Art. ID 979705, 27. doi:10.1155/2011/979705.
  19. Du NHuu, Trung TThanh. On the dynamics of predator-prey systems with {B}eddington-{D}eangelis functional response. Asian-Eur. J. Math. 2011;4:35–48. doi:10.1142/S1793557111000058.