Ninh Văn Thu

Ninh Văn Thu, Doctor
VNU mail:
thunv@vnu.edu.vn
Website:
thunv.wordpress.com
Research Fields:
Several Complex Variables, Nevanlinna Theory
Education :
  • 2005-2010: PhD. in Mathematics at Department of Mathematics, Hanoi National University of Education, Hanoi, Vietnam.
  • 2002-2004: M.Sc. in Mathematics, VNU University of Science, Vietnam, Hanoi, Vietnam.
  • 1998-2002: B.S. in Mathematics, VNU University of Science, Vietnam, Hanoi, Vietnam.
Teaching:
  • Analysis (Giải tích)
  • Complex Analysis (Giải tích phức)
Science Activities:
  • 10/2006-11/2006: Short Visiting Scholar, Labo Emile Picard, University of Toulouse, Toulouse, France
  • 09/2010-12/2010: Short Visiting Scholar, Math department, University of Washington, Seattle, USA
  • 03/2012-02/2013: Postdoctoral Fellow at Center for Geometry and its Applications (GAIA), POSTECH, Pohang, Korea
  • 03/2013-02/2015: Research Assistant Professor at Center for Geometry and its Applications (GAIA), POSTECH, Pohang, Korea
  • 04/2015-09/2015: Senior Researcher at VIASM, Hanoi, Vietnam
Awards:
  • 2000: VNU-UFJ Foundation Scholarship, Vietnam National University at Hanoi, Vietnam.

Publications

  1. Hayashimoto A, Ninh VThu. Infinitesimal CR automorphisms and stability groups of infinite-type models in $\mathbb C^2$. Kyoto Journal of Mathematics. 2016;Volume 56, Number 2 (2016), 441-464.
  2. Iterates of holomorphic self-maps on pseudoconvex domains of finite and infinite type in {$\Bbb{C}^n$}. Proc. Amer. Math. Soc. 2016;144:5197–5206. doi:10.1090/proc/13138.
  3. Ninh VThu. On the CR automorphism group of a certain hypersurface of infinite type in $\mathbb C^2$. Complex Var. Elliptic Equ. 60 (2015), pp. 977-991. 2015.
  4. On the tangential holomorphic vector fields vanishing at an infinite type point. Trans. Amer. Math. Soc. 2015;367:867–885. doi:10.1090/S0002-9947-2014-05917-5.
  5. On the existence of parabolic actions in convex domains of {$\Bbb{C}^{k+1}$}. Czechoslovak Math. J. 2015;65(140):579–585. doi:10.1007/s10587-015-0197-y.
  6. On limit {B}rody curves in {$\Bbb C^n$} and {$(\Bbb C^*)^2$}. Kyushu J. Math. 2015;69:111–123. doi:10.2206/kyushujm.69.111.
  7. Kim H, Ninh VThu, Yamamori A. The automorphism group of a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl. 409 (2014), pp. 637-642. 2014.
  8. Ninh VThu, Chử VTiệp. On the nonexistence of parabolic boundary points of certain domains in $\mathbb C^2$. J. Math. Anal. Appl. 389 (2012), pp. 908–914. 2012.
  9. Đỗ Đức T, Ninh VThu. The second main theorem for hypersurfaces. Kyushu J. Math. 65 (2011), no. 2, pp. 219–236. 2011.
  10. Đỗ Đức T, Ninh VThu. Geometry of domains in $\mathbb C^n$ with noncompact automorphism groups. Vietnam J. Math. 37: 2&3 (2009), pp. 1-12. 2009.