Nguyễn Hữu Dư

Nguyễn Hữu Dư, Eminent Teacher, Professor, Doctor
Office:
T3-303
Website:
https://scholar.google.com.vn/citations?user=WfYUSMkAAAAJ&hl=vi
Research Fields:
Lý thuyết Xác suất và Thống kê, Hệ động lực tất định và ngẫu nhiên, Phương trình Vi phân
Education :
  • Đại học, 1979, Xác suất-Thống kê, Đại học Tổng Hợp Hà Nội, Hà Nội, Việt Nam
  • Tiến sỹ, 1990, Điều khiển Ngẫu nhiên, Đại học Tổng Hợp Hà Nội, Hà Nội, Việt Nam
Teaching:
  • Xác suất,-Thống kê
  • Phương trình Vi phân
  • Lý thuyết Hệ động lực
  • Lý thuyết Độ đo
  • Quá trình ngẫu nhiên

Publications

  1. Dynamics of a stochastic epidemic model with vaccination and general incidence rate. Vietnam Journal of Mathematics. 2025. doi:https://doi.org/10.1007/s10013-024-00698-8.
  2. Asymptotic behavior for a stochastic behavioral change SIR model. Journal of Mathematical Analysis and Applications. 2024;538. doi:https://doi.org/10.1016/j.jmaa.2024.128361.
  3. Continuous dependence of stationary distributions on parameters for stochastic predator–prey models. Journal of Applied Probability. 2024;61. doi:https://doi.org/10.1017/jpr.2023.98.
  4. Hybrid stochastic epidemic SIR models with hidden states. Nonlinear Analysis: Hybrid Systems. 2023;49. doi:https://doi.org/10.1016/j.nahs.2023.101368.
  5. A staggered cell-centered finite element method for Stokes problems with variable viscosity on general meshes. Numerical Methods for Partial Differential Equations . 2023;39. doi:https://doi.org/10.1002/num.22952.
  6. Bohl–Perron theorem for random dynamical systems, Stochastics and Dynamics. Stochastics and Dynamics. 2023;Art. 2350010. doi:https://doi.org/10.1142/S0219493723500107.
  7. Tempered exponential dichotomies for linear random evolution equations. Stochastics. 2023;95. doi:2023 Le Duc Nhien, Nguyen Huu Du, Le Huy Tien, Nguyen Trong Hieu, Tempered exponential dichotomies for linear random evolution equations, Stochastics 95 (2023) 1-22 https://doi.org/10.1080/17442508.2022.2034820.
  8. Stability of stochastic functional differential equations with random switching and applications. Automatica. 2021;125:109410. doi:https://doi.org/10.1016/j.automatica.2020.109410.
  9. Dynamical systems under random perturbations with fast switching and slow diffusion: Hyperbolic equilibria and stable limit cycles. Journal of Differential Equations. 2021;293:313-358. doi:https://doi.org/10.1016/j.jde.2021.05.032.
  10. A Novel Cell-Centered Approach of Upwind Types for Convection Diffusion Equations on General Meshes. International Journal of Computational Methods. 2021;18:2150019. doi:10.1142/S0219876221500195.