Department of Mathematical Modeling in Ecology and Environment 's publications

2023

  1. Tempered exponential dichotomies for linear random evolution equations. Stochastics. 2023;95. doi:2023 Le Duc Nhien, Nguyen Huu Du, Le Huy Tien, Nguyen Trong Hieu, Tempered exponential dichotomies for linear random evolution equations, Stochastics 95 (2023) 1-22 https://doi.org/10.1080/17442508.2022.2034820.

2022

  1. Existence and non-existence results for the higher order Hardy–Hénon equations revisited. Journal de Mathématiques Pures et Appliquées. 2022. doi:https://doi.org/10.1016/j.matpur.2022.05.006.

2021

  1. A Novel Cell-Centered Approach of Upwind Types for Convection Diffusion Equations on General Meshes. International Journal of Computational Methods. 2021;18:2150019. doi:10.1142/S0219876221500195.
  2. Stability of stochastic functional differential equations with random switching and applications. Automatica. 2021;125:109410. doi:https://doi.org/10.1016/j.automatica.2020.109410.
  3. Threshold of a stochastic SIQS epidemic model with isolation. Discrete and Continuous Dynamical Systems - B. 2021:-.
  4. Dynamical systems under random perturbations with fast switching and slow diffusion: Hyperbolic equilibria and stable limit cycles. Journal of Differential Equations. 2021;293:313-358. doi:https://doi.org/10.1016/j.jde.2021.05.032.

2020

  1. A supercritical Sobolev type inequality in higher order Sobolev spaces and related higher order elliptic problems. Journal of Differential Equations. 2020;268:5996-6032. doi:https://doi.org/10.1016/j.jde.2019.11.014.
  2. A supercritical Sobolev type inequality in higher order Sobolev spaces and related higher order elliptic problems. Journal of Differential Equations. 2020;268:5996-6032. doi:https://doi.org/10.1016/j.jde.2019.11.014.
  3. Solvability of a Nonlocal Problem for an Evolution Equation with a Superstable Semigroup. Differential Equations. 2020;56:478-498. doi:10.1134/S0012266120040072.
  4. Higher order Sobolev trace inequalities on balls revisited. Journal of Functional Analysis. 2020;278:108414. doi:https://doi.org/10.1016/j.jfa.2019.108414.