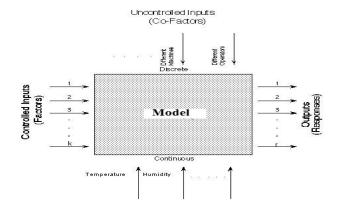
Introduction to Screening Designs

Tung-Dinh Pham VNU University of Science


March 26, 2017

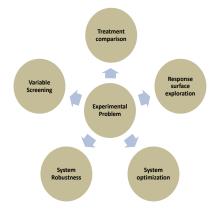
Tung-Dinh Pham VNU University of Science Introduction to Screening Designs

Outline

- What is the experiment?
- Objectives of experimental problem
- Screning designs
- Placket-Burman designs
- DSD-based Screening designs
- Supersaturated designs (SSD)
- Thermostats experiment
- Pharmaceutical experiment and saturated designs
- Reference

What is the experiment?

æ


< ∃ →

- ● ● ●

Steps for Experimental Design Selection?

- Statement of the objective.
- Input Factors: Type (Quantitative or Qualitative), levels , constraint.
- Sesponse: Value, limits.
- Model: Which effects should be included? main effects, interaction effects, quadratic effects.
 - First-order model: $y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \epsilon$
 - Pure-quadratic model: $y = \beta_0 + \sum_{i=1}^m \beta_i x_i + \sum_{i=1}^m \beta_i x_i^2 + \epsilon$
 - Second-order model: $y = \beta_0 + \sum_{i=1}^m \beta_i x_i + \sum_{i=1}^{m-1} \sum_{j=i+1}^m \beta_{ij} x_i x_j + \sum_{i=1}^m \beta_i x_i^2 + \epsilon$
- Sun selection: total number of runs, center point, replication, order of runs.
- Choose the Design.

Objectives of experimental problem?

Screening designs are designs conducted at the primary stage of the experiment to screen out significant factors from a large number of factors for further studies. In some situations, the number of runs minus 1 is not greater than the number of factor, then the screening designs is referred as saturated or supersaturated designs. Popular screening designs are

- 2-level screening designs such as fractional factorial designs.
- Saturated designs:
 - 2-level saturated designs (Placket-Burman designs).
 - 3-level saturated designs (Nguyen & Pham(2017)).
- DSD-based screening designs:
 - 3-level DSDs (Jones and Nachtsheim, 2011; Xiao et al., 2012; Nguyen and Stylianou, 2013).
 - Mix-level Screening designs (Jones & Nachtsheim (2013), Yang et al. (2014), Nguyen & Pham (2016)).

• Supersaturated designs (SSDs):

- 2-level SSDs (Booth & Cox (1962), Lin (1993), Wu (1993), Nguyen (1996) and other authors (See Gilmour, 2005, Georgiou, 2014)).
- 3-level Supersaturated Designs (Nguyen & Pham (2017)).
- The mixed-level SSDs (Yamaha & Lin (1999), Yamaha et al. (1999), Fang et al. (2000) and other authors (See Georgiou, 2014)).

Placket-Burman design: Lipase experiment

Tạp chí Công nghệ Sinh học 7(4): 493-500, 2009

Bàng 1. Các biến trong ma trận Plackett-Burman và ảnh l	nưởng của chúng.

	Yéu tố	1	Mức	Mức đ	ộ ành hưởng		
Ký hiệu	Tên yếu tố	Thấp (-1) Cao (+		Ánh hưởng	Prob > F		
X1	Rỉ đường (%)	0,0	10,0	-1,92ª	0,0184		
X ₂	Glucose (%)	0,0	2,5	0,75 ^b			
Xa	NaNO3 (%)	0,2	1,2	0,25 ^b			
X4	(NH4)2SO4 (%)	0,0	0,9	0,25 ^b			
Xs	(NH ₄) ₂ HPO ₄ (%)	0,1	0,8	-2,22ª	0,0106		
X ₆	Chiết nấm men (%)	0,5	1,0	7,35 ^a	< 0,0001		
X7	Nhiệt độ (°C)	25,0	37,0	0,75 ^b			
Xa	pH	5,0	10,0	-1,82ª	0,0224		
Xa	Tuổi giống (h)	12,0	24,0	-0,55 ^b			
X10	Tỷ lệ giống (%)	1,0	3,0	3,58 ^a	0,0014		
X11	Tỷ lệ dầu ăn (%)	2,0	5,0	3,28ª	0,002		

^a Có ý nghĩa ở độ tin cậy α = 0,05; ^b Không có ý nghĩa ở độ tin cậy α = 0,05.

Bàng 2. Ma trận thiết kế thí nghiện	n Plackett-Burman.

Thí	Các biến									Lipase (U/ml) (105 h)			
nghiệm	Χ1	X2	X3	X4	Xs	Xc	X7	Xa	Xa	X10	X11	Thực nghiệm	Mô hình
1	+1	-1	+1	-1	-1	-1	+1	+1	+1	-1	+1	3,2	3,48
2	+1	+1	-1	+1	-1	-1	-1	+1	+1	+1	-1	3,5	3,78
3	-1	+1	+1	-1	+1	-1	-1	-1	+1	+1	+1	9,0	8,58
4	+1	-1	+1	+1	-1	+1	-1	-1	-1	+1	+1	16,0	16,23
5	+1	+1	-1	+1	+1	-1	+1	-1	-1	-1	+1	4,1	3,08
6	+1	+1	+1	-1	+1	+1	-1	+1	-1	-1	-1	5,6	5,33
7	-1	+1	+1	+1	-1	+1	+1	-1	+1	-1	-1	12,0	11,28
8	-1	-1	+1	+1	+1	-1	+1	+1	-1	+1	-1	4,0	3,48
9	-1	-1	-1	+1	+1	+1	-1	+1	+1	-1	+1	9,5	10,53
10	+1	-1	-1	-1	+1	+1	+1	-1	+1	+1	-1	10,2	10,73
11	-1	+1	-1	-1	-1	+1	+1	+1	-1	+1	+1	17,1	16,33
12	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1 🕢	1	3,2 · · · · ·	3,93

Tung-Dinh Pham VNU University of Science

Introduction to Screening Designs

DSD-based screening designs: 3-level screening designs

Definitive Screening Designs (DSDs) for 3-level factors are used to found the important effects in the model

$$y = \beta_0 + \sum_{i=1}^m \beta_i x_i + \sum_{i=1}^m \beta_{ii} x_i^2 + \varepsilon = X\beta + \varepsilon$$
(1)

where β_i are main effects and β_{ii} are pure-quadratic effects.

• Jones & Nachtsheim (2011) introduced an general structure for DSDs as:

$$\begin{pmatrix} \mathbf{C} \\ \mathbf{0} \\ -\mathbf{C} \end{pmatrix}, \qquad (2)$$

where $C_{m \times m}$ is a $(0, \pm 1)$ -matrix with zero diagonal.

- Stylianou (2011) and Xiao et al. (2012) point out that if *m* is even and we can use a *conference* matrix order *m* for **C** then the DSD is global optimum.
- Nguyen & Stylianou (2013) provide cyclic generators for the construction of C in (3) for both even and odd m.

	DSI	D for	6 fac	tors	
0	1	1	1	1	1
1	0	-1	1	1	-1
1	-1	0	-1	1	1
1	1	-1	0	-1	1
1	1	1	-1	0	-1
1	-1	1	1	-1	0
0	0	0	0	0	0
0	-1	-1	-1	-1	-1
-1	0	1	-1	-1	1
-1	1	0	1	-1	-1
-1	-1	1	0	1	-1
-1	-1	-1	1	0	1
-1	1	-1	-1	1	0

・ロン ・部 と ・ ヨン ・ ヨン …

э.

DSD-based screening designs: Mix-level screening designs (MLSD)

The following linear model for an MLSD with m_3 3-level factors and m_2 2-level factors or categorical factors in *n* runs:

$$y = \beta_0 + \sum_{i=1}^{m_3} \beta_{ii} x_i^2 + \sum_{i=1}^{m_3+m_2} \beta_i x_i + \varepsilon = X\beta + \varepsilon.$$

- Jones & Nachtsheim (2013) introduced DSD-augmented designs (ADSDs) and ORTH-augmented designs (OADs). They can be obtained by converting some columns of a DSD to 2-level ones. Note that the main effects of ADSDs are orthogonal to the quadratic effects. In this talk, we will denote the MLSDs whose the above property of ADSDs as MLSD*'s.
- Yang et al. (2014) introduced a new class of minimal-run MLSDs constructed from conference matrices and maximal determinant matrices (cf. http://indiana.edu/~maxdet/).
 YLL's MLSDs are small and are not MLSD*'s.

DSD-based screening designs: Mix-level screening designs (MLSD)

 Nguyen & Pham (2016) introduced the AUGMENT algorithm for constructing the small MLSDs* and improved an amount of YLL's designs.

Small Mixed-Level Screening Designs with Orthogonal Quadratic Effects

NAM-KY NGUYEN

Vietnam Institute for Advanced Study in Mathematics, Hanoi, Vietnam

TUNG-DINH PHAM

Vietnam National University, University of Science, Hanoi, Vietnam

This paper discusses an algorithm for constructing mixed-level screening designs (MLSDs) by augmenting some columns of a definitive screening designs (DSDs) with additional two-level columns. The constructed designs have the quadratic effects being orthogonal to main effects. The algorithm is used to construct designs with the number of runs being equal to p (i.e., the number of model parameters) for even p or p + 1for odd p. The performance of these small DSD-based MLSDs in terms of the D-efficiency is evaluated against the 60 small MLSDs of Yang et al. (2014).

Key Words: Augmented Designs; Conference Matrix; D-Efficiency; Definitive Screening Designs; Inter 🕨 👍 🚊 🔗 🔍 🖓

DSD-based screening designs: small MLSDs*

Idea: Augmenting 2-level factors to some columns of a DSD.

(1)	(2)	(3)	(4)
++0+	++0++	++0+	++0++
0-+-+++	0-+	0-+	0-+
-++0	-++0-++	-++0+++	-++0+++
+++-+++	++++-	++++-	++++-
+-++	+-+++-+	+-+++-+	+-+++-+
-0+++++	-0+++	-0+++	-0++
0000	0000-++	0000-++	0000-++
0-+++	0 - ++ -	0-++-	0-++-
0+-+	0+-+++	0+-++++	0+-+++
+0+++	+0	+0	+0
+	+-	+-	+-+-
-+++	-++	-++	-++-+
+0	+0+++	+0+++	+0++
0000+++	0000+	0000+	0000+

Figure 1: Steps of AUGMENT to produce a DSD-based MLSD* for four 3-level factors and three 2-level factors in 14 runs.

Thermostats experiment

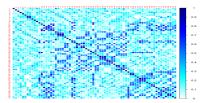
Bullington et al. (1993) reported the use of a 12-run Plackett-Burman design in an experiment to improve the reliability of industrial thermostats. Ten thermostats were manufactured at each of the 12 factor settings and tested up to 7342 (\times 1000) cycles. The failure time data are recorded in table and used for fitting the lognormal linear regression model.

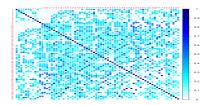
Α	В	С	D	E	F	G	н	1	J	К	Failure time						
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	957	2846	7342	7342	7342	7342	7342
-1	-1	-1	-1	-1	1	1	1	1	1	1	206	284	296	305	313	343	364
-1	-1	1	1	1	-1	-1	-1	1	1	1	63	113	129	138	149	153	217
-1	1	-1	1	1	-1	1	1	-1	-1	1	75	104	113	234	270	364	398
-1	1	1	-1	1	1	-1	1	-1	1	-1	97	126	245	250	390	390	479
-1	1	1	1	-1	1	1	-1	1	-1	-1	490	971	1615	6768	7342	7342	7342
1	-1	1	1	-1	-1	1	1	-1	1	-1	232	326	326	351	372	446	459
1	-1	1	-1	1	1	1	-1	-1	-1	1	56	71	92	104	126	156	161
1	-1	-1	1	1	1	-1	1	1	-1	-1	142	142	238	247	310	318	420
1	1	1	-1	-1	-1	-1	1	1	-1	1	259	266	306	337	347	368	372
1	1	-1	1	-1	1	-1	-1	-1	1	1	381	420	7342	7342	7342	7342	7342
1	1	-1	-1	1	-1	1	-1	1	1	-1	56	62	92	104	113	121	164

Table 1: Lifetime data of Themorstats Experiment

YLL's MLSD	16-run MLSD*	18-run MLSD*	26-run ADSD
0+++++++	++	+++0++++	+0++++++++
-0-+-+-+++	-+-0-+-+++-	++-+-++-	++++++
-+0+++-+	+0++	0+-++-++	0++++
+0++-++	0-++-+	- 0++ ++ - + -	-+-++++++
0000++++++	-+0	++++	+++0-+++-
0++++	++++-+	+-++-++	-+0++++-+
+0+++++	+++-++	-++++-+-+	-+-++++++
+-0++++-+	0000+++-+-+	+-0+++	-++-+-+-
++-0++-++	+++-++-	0000++-	++++-+++
0+++-++	+-+0+-+	0+++	+++++++-
-0-++-++	-0++++-	+-++-++-	++-+-++
-+0-+++-	0++-++-+-	0-++-+	-+++
+0+++	+-0++++++-	+0++-++	0000+-
0++++++-	-++++	+++-+++	-0
-0-++++-	++-++	-++	++-++-
-+0+	0000++	+++++++++++++++++++++++++++++++++++++	0++
		-+0++++	+-+++
		0000-++++-+	0+-+++
			+-0+++-
			+-+-++
			++-++++++++++++++++++++++++++++++++++
			++-++-+-
			++-++
			+-+-+++
			++-+-++
			0000+++++-+
			0000

Figure 2: Four candidate MLSDs for the thermostats experiment described in Bullington et al. (1993).

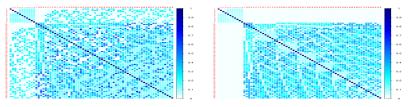

Table 2. Comparison of five candidate MLSDs for the thermostats expendescribed in Bullington et al. (1993).


MLSDs	(d_1, d_2)	<i>r</i> _{max}	$r'_{\rm max}$	VQ	V _{M3}
YLL's MLSD	(77.9, 67.3)	0.75	0.76 (1)‡	0.803	0.167†
16-run MLSD*	(94.1, 88.6)	0.33	0.60 (3)	0.417†	0.139
18-run MLSD*	(99.1, 89.9)	0.36	0.29 (48)	0.414†	0.080
26-run ADSD	(105.7, 86.9)	0.41	0.00†(495)	0.408†	0.048
36-run OA	(100.0, 100.0)	0.00†	0.54 (3)	0.125†	0.042†

[†]Maximum value is the same as minimum value.

‡Frequencies.

Thermostats experiment: Correlation Cell Plot For Four MLSDs



(a-YLL16)

(d-ADSD26)

(c-MLSD*18)

Tung-Dinh Pham VNU University of Science

Introduction to Screening Designs

Phan (2006) described an experiment on robustness of a pharmaceutical experiment with 35 factors: (1) change of pyridine $\pm 5\%$, (2) addition temperature $\pm 3^0 C$, (3) reaction temperature $\pm 3\%$, (4) reaction time 90-15 min, (5) addition H_2O 120-140 min, (6) charge acetone $\pm 5\%$, etc. (35) drying $45 \pm 5^0 C$. Assume that the factors of both experiment are quantitative, Nguyen & Pham (2017) suggest an Es^2 -optimal 3-level Saturated design for this experiment.

Saturated and Supersaturated designs

Chemometrics and Intelligent Laboratory Systems 164 (2017) 1-7

Constructing 3-level saturated and supersaturated designs using cyclic generators

Nam-Ky Nguyen^{a,*}, Tung-Dinh Pham^b

^a Vietnam Institute for Advanced Study in Mathematics, Hanoi, Vietnam ^b VNU University of Science, Hanoi, Vietnam

ARTICLE INFO

JEL classification: 62K20

Keywords: Balanced designs Conference matrices Interchange algorithm Plackett-Burman designs Screening designs

ABSTRACT

Saturated designs (3Ds) and supersaturated designs (SDs) are designs used at the primary stage of investigations when the number of factors equals are exceeded the number of the saturative the stage of the saturative the saturative, this paper discusses an algorithm for constructing 3-level 3Ds and 3Ds using cyclic generators. The $E_{c}^{(2)}$ -lover bound and examples inductions the of these designs are given.

1. Introduction

Many factors in science or engineering experiments are quantitative. Despite this fact, most screening designs for these experiments are 2level designs such as Plackett-Burnan designs (1946) or resolution III and IV fractional factorial designs. The 3-level screening designs called definitive screening designs (DSD) of Jones & Nachtsheim [8] seem more anoronizate for these experiments. Unfortunatelv. as the number

Tung-Dinh Pham VNU University of Science

Yamaha et al. [18], Fang et al. [4], Croguennoc [1], Claeys-Bruno et al. [3] and other authors (See Georgiou, [5]). The mixed-level SDs in these work are aimed at designs with categorical factors and might not be suitable to experiments with quantitative factors such as the ones in the previous paragraph.

This paper discusses an algorithm for constructing 3-level SDs and SSDs using cyclic generators. Section 2 explains the criteria we use for comparing 3-level SDs and SSDs. Section 3 shows how the 3-level SDs

Introduction to Screening Designs

References

- Bùi Hồng Quân & Nguyễn Đức Lượng (2009), "Tối ưu hóa sinh tổng hợp Lipase từ Pichia anomala VTCC Y0787 sử dụng ma trận Placket-Burman và phương pháp đáp ứng bề mặt - Phương án cấu trúc có tâm", *Tạp chí* công nghệ sinh học, **7**, pp.493-500.
- Bullington, R.G., Lovin, S., Miller, D. M., & Woodall, W. H. (1993). Improvement of an Industrial Themostat Using Designed Experiments. *Journal of Quality Technology*, 25, 262-270.
- El-Malah, Y. & Nazzal, S. (2006) Hydrophilic matrices: Application of Placket - Burman screening design to model the effect of POLYOX carbopol blends on drug release. *International Journal of Pharmaceutics* 309, 163-170.
- Jones, B & Nachtsheim, C.J. (2011). A class of three levels designs for definitive screening in the presence of second order effects. *J. of Quality Technology* **43**, 1-15.
- Jones, B & Nachtsheim, C.J. (2013). Definitive screening designs with added two-level categorical factors*. *J. of Quality Technology* **45**, 121-129.
- Nguyen, N-K & Stella Stylianoub (2013), Constructing Definitive Screening Designs Using Cyclic Generators, Journal of Statistics Theory & Practice, 7, 713-724.

- Nguyen, N-K & Pham, T-D (2015) Searching for D-efficient Equivalent-Estimation Second-Order Split-Plot Designs *Journal of Quality Technology* 47, pp. 54-65.
- Nguyen, N-K & Pham T-D (2016) Small Mixed-Level Screening Designs with Orthogonal Quadratic Effects *Journal of Quality Technology* **48**, pp. 405-414.
- Nguyen, N-K & Pham T-D (2017) Constructing 3-level Saturated and Supersaturated Designs Using Cyclic Generators *Chemometrics and Intelligent Laboratory Systems* **164**, pp. 1-7.
- Stylianou S. (2011). Three-level screening designs applicable to models with second order terms. paper presented at the International Conference on Design of Experiments (ICODOE-2011). May 10-13, 2011, Department of Mathematical Sciences, University of Memphis Memphis, USA.
- Xiao, L. Lin, D.K.J. & Bai F. (2012). Constructing definitive screening designs using conference matrices. J. of Quality Technology 44, 2-8.
- Yang, J. Lin, D.K.J & Liu, M.Q. (2014) Construction of Minimal-Point Mixed-Level Screening Designs Using Conference Matrices. J. of Quality Technology 46, 251-264.

イロト イボト イヨト イヨト

THANK YOU FOR PAYING ATTENTION TO MY TALK

Tung-Dinh Pham VNU University of Science Introduction to Screening Designs